Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Am J Transplant ; 2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-20231266

ABSTRACT

T-cell-mediated help to B cells is required for the development of humoral responses, in which the cytokine interleukin (IL)-21 is key. Here, we studied the mRNA-1273 vaccine-induced SARS-CoV-2-specific memory T-cell IL-21 response, memory B cell response, and immunoglobulin (Ig)G antibody levels in peripheral blood at 28 days after the second vaccination by ELISpot and the fluorescent bead-based multiplex immunoassay, respectively. We included 40 patients with chronic kidney disease (CKD), 34 patients on dialysis, 63 kidney transplant recipients (KTR), and 47 controls. We found that KTR, but not patients with CKD and those receiving dialysis, showed a significantly lower number of SARS-CoV-2-specific IL-21 producing T cells than controls (P < .001). KTR and patients with CKD showed lower numbers of SARS-CoV-2-specific IgG-producing memory B cells when compared with controls (P < .001 and P = .01, respectively). The T-cell IL-21 response was positively associated with the SARS-CoV-2-specific B cell response and the SARS-CoV-2 spike S1-specific IgG antibody levels (both Pearson r = 0.5; P < .001). In addition, SARS-CoV-2-specific B cell responses were shown to be IL-21 dependent. Taken together, we show that IL-21 signaling is important in eliciting robust B cell-mediated immune responses in patients with kidney disease and KTR.

2.
J Clin Immunol ; 2023 May 26.
Article in English | MEDLINE | ID: covidwho-20230962

ABSTRACT

PURPOSE: Patients with inborn errors of immunity (IEI) are at increased risk of severe coronavirus disease-2019 (COVID-19). Effective long-term protection against COVID-19 is therefore of great importance in these patients, but little is known about the decay of the immune response after primary vaccination. We studied the immune responses 6 months after two mRNA-1273 COVID-19 vaccines in 473 IEI patients and subsequently the response to a third mRNA COVID-19 vaccine in 50 patients with common variable immunodeficiency (CVID). METHODS: In a prospective multicenter study, 473 IEI patients (including X-linked agammaglobulinemia (XLA) (N = 18), combined immunodeficiency (CID) (N = 22), CVID (N = 203), isolated or undefined antibody deficiencies (N = 204), and phagocyte defects (N = 16)), and 179 controls were included and followed up to 6 months after two doses of the mRNA-1273 COVID-19 vaccine. Additionally, samples were collected from 50 CVID patients who received a third vaccine 6 months after primary vaccination through the national vaccination program. SARS-CoV-2-specific IgG titers, neutralizing antibodies, and T cell responses were assessed. RESULTS: At 6 months after vaccination, the geometric mean antibody titers (GMT) declined in both IEI patients and healthy controls, when compared to GMT 28 days after vaccination. The trajectory of this decline did not differ between controls and most IEI cohorts; however, antibody titers in CID, CVID, and isolated antibody deficiency patients more often dropped to below the responder cut-off compared to controls. Specific T cell responses were still detectable in 77% of controls and 68% of IEI patients at 6 months post vaccination. A third mRNA vaccine resulted in an antibody response in only two out of 30 CVID patients that did not seroconvert after two mRNA vaccines. CONCLUSION: A similar decline in IgG titers and T cell responses was observed in patients with IEI when compared to healthy controls 6 months after mRNA-1273 COVID-19 vaccination. The limited beneficial benefit of a third mRNA COVID-19 vaccine in previous non-responder CVID patients implicates that other protective strategies are needed for these vulnerable patients.

3.
NPJ Vaccines ; 8(1): 70, 2023 May 17.
Article in English | MEDLINE | ID: covidwho-2322738

ABSTRACT

Cytokines are regulators of the immune response against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). However, the contribution of cytokine-secreting CD4+ and CD8+ memory T cells to the SARS-CoV-2-specific humoral immune response in immunocompromised kidney patients is unknown. Here, we profiled 12 cytokines after stimulation of whole blood obtained 28 days post second 100 µg mRNA-1273 vaccination with peptides covering the SARS-CoV-2 spike (S)-protein from patients with chronic kidney disease (CKD) stage 4/5, on dialysis, kidney transplant recipients (KTR), and healthy controls. Unsupervised hierarchical clustering analysis revealed two distinct vaccine-induced cytokine profiles. The first profile was characterized by high levels of T-helper (Th)1 (IL-2, TNF-α, and IFN-γ) and Th2 (IL-4, IL-5, IL-13) cytokines, and low levels of Th17 (IL-17A, IL-22) and Th9 (IL-9) cytokines. This cluster was dominated by patients with CKD, on dialysis, and healthy controls. In contrast, the second cytokine profile contained predominantly KTRs producing mainly Th1 cytokines upon re-stimulation, with lower levels or absence of Th2, Th17, and Th9 cytokines. Multivariate analyses indicated that a balanced memory T cell response with the production of Th1 and Th2 cytokines was associated with high levels of S1-specific binding and neutralizing antibodies mainly at 6 months after second vaccination. In conclusion, seroconversion is associated with the balanced production of cytokines by memory T cells. This emphasizes the importance of measuring multiple T cell cytokines to understand their influence on seroconversion and potentially gain more information about the protection induced by vaccine-induced memory T cells.

4.
Lancet Infect Dis ; 2023 Apr 20.
Article in English | MEDLINE | ID: covidwho-2304555

ABSTRACT

BACKGROUND: Bivalent mRNA-based COVID-19 vaccines encoding the ancestral and omicron spike (S) protein were developed as a countermeasure against antigenically distinct SARS-CoV-2 variants. We aimed to assess the (variant-specific) immunogenicity and reactogenicity of mRNA-based bivalent omicron (BA.1) vaccines in individuals who were primed with adenovirus-based or mRNA-based vaccines encoding the ancestral spike protein. METHODS: We analysed results of the direct boost group of the SWITCH ON study, an open-label, multicentre, randomised controlled trial. Health-care workers from four academic hospitals in the Netherlands aged 18-65 years who had completed a primary COVID-19 vaccination regimen and received one booster of an mRNA-based vaccine, given no later than 3 months previously, were eligible. Participants were randomly assigned (1:1) using computer software in block sizes of 16 and 24 to receive an omicron BA.1 bivalent booster straight away (direct boost group) or a bivalent omicron BA.5 booster, postponed for 90 days (postponed boost group), stratified by priming regimen. The BNT162b2 OMI BA.1 boost was given to participants younger than 45 years, and the mRNA-1273.214 boost was given to participants 45 years or older, as per Dutch guidelines. The direct boost group, whose results are presented here, were divided into four subgroups for analysis: (1) Ad26.COV2.S (Johnson & Johnson) prime and BNT162b2 OMI BA.1 (BioNTech-Pfizer) boost (Ad/P), (2) mRNA-based prime and BNT162b2 OMI BA.1 boost (mRNA/P), (3) Ad26.COV2.S prime and mRNA-1273.214 (Moderna) boost (Ad/M), and (4) mRNA-based prime and mRNA-1273.214 boost (mRNA/M). The primary outcome was fold change in S protein S1 subunit-specific IgG antibodies before and 28 days after booster vaccination. The primary outcome and safety were assessed in all participants except those who withdrew, had a SARS-CoV-2 breakthrough infection, or had a missing blood sample at day 0 or day 28. This trial is registered with ClinicalTrials.gov, NCT05471440. FINDINGS: Between Sept 2 and Oct 4, 2022, 219 (50%) of 434 eligible participants were randomly assigned to the direct boost group; 187 participants were included in the primary analyses; exclusions were mainly due to SARS-CoV-2 infection between days 0 and 28. From the 187 included participants, 138 (74%) were female and 49 (26%) were male. 42 (22%) of 187 participants received Ad/P and 44 (24%) mRNA/P (those aged <45 years), and 45 (24%) had received Ad/M and 56 (30%) mRNA/M (those aged ≥45 years). S1-specific binding antibody concentrations increased 7 days after bivalent booster vaccination and remained stable over 28 days in all four subgroups (geometric mean ratio [GMR] between day 0 and day 28 was 1·15 [95% CI 1·12-1·19] for the Ad/P group, 1·17 [1·14-1·20] for the mRNA/P group, 1·20 [1·17-1·23] for the Ad/M group, and 1·16 [1·13-1·19] for the mRNA/M group). We observed no significant difference in the GMR between the Ad/P and mRNA/P groups (p=0·51). The GMR appeared to be higher in the Ad/M group than in the mRNA/M group, but was not significant (p=0·073). Most side-effects were mild to moderate in severity and resolved within 48 h in most individuals. INTERPRETATION: Booster vaccination with mRNA-1273.214 or BNT162b2 OMI BA.1 in adult healthcare workers resulted in a rapid recall of humoral and cellular immune responses independent of the priming regimen. Monitoring of SARS-CoV-2 immunity at the population level, and simultaneously antigenic drift at the virus level, remains crucial to assess the necessity and timing of COVID-19 variant-specific booster vaccinations. FUNDING: The Netherlands Organization for Health Research and Development (ZonMw).

6.
J Infect Dis ; 2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2277347

ABSTRACT

Modified vaccinia virus Ankara (MVA) is used as a vaccine against monkeypox virus (MPXV) and as a viral vaccine vector. MVA-MERS-S is a vaccine candidate against Middle East respiratory syndrome- associated coronavirus (MERS-CoV). Here, we report that cross-reactive MPXV nAbs were detectable in only a single subject after the first dose, 3 out of 10 after the 2nd dose, and in 10 out of 10 after the 3rd dose of MVA-MERS-S vaccine.

7.
Lancet Infect Dis ; 2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2266264

ABSTRACT

BACKGROUND: An urgent need exists to improve the suboptimal COVID-19 vaccine response in kidney transplant recipients (KTRs). We aimed to compare three alternative strategies with a control single dose mRNA-1273 vaccination: a double vaccine dose, heterologous vaccination, and temporary discontinuation of mycophenolate mofetil or mycophenolic acid. METHODS: This open-label randomised trial, done in four university medical centres in the Netherlands, enrolled KTRs without seroconversion after two or three doses of an mRNA vaccine. Between Oct 20, 2021, and Feb 2, 2022, 230 KTRs were randomly assigned block-wise per centre by a web-based system in a 1:1:1 manner to receive 100 µg mRNA-1273, 2 × 100 µg mRNA-1273, or Ad26.COV2-S vaccination. In addition, 103 KTRs receiving 100 µg mRNA-1273, were randomly assigned 1:1 to continue (mycophenolate mofetil+) or discontinue (mycophenolate mofetil-) mycophenolate mofetil or mycophenolic acid treatment for 2 weeks. The primary outcome was the percentage of participants with a spike protein (S1)-specific IgG concentration of at least 10 binding antibody units per mL at 28 days after vaccination, assessed in all participants who had a baseline measurement and who completed day 28 after vaccination without SARS-CoV-2 infection. Safety was assessed as a secondary outcome in all vaccinated patients by incidence of solicited adverse events, acute rejection or other serious adverse events. This trial is registered with ClinicalTrials.gov, NCT05030974 and is closed. FINDINGS: Between April 23, 2021, and July 2, 2021, of 12 158 invited Dutch KTRs, 3828 with a functioning kidney transplant participated in a national survey for antibody measurement after COVID-19 vaccination. Of these patients, 1311 did not seroconvert after their second vaccination and another 761 not even after a third. From these seronegative patients, 345 agreed to participate in our repeated vaccination study. Vaccination with 2 × mRNA-1273 or Ad26.COV2-S was not superior to single mRNA-1273, with seroresponse rates of 49 (68%) of 72 (95% CI 56-79), 46 (63%) of 73 (51-74), and 50 (68%) of 73 (57-79), respectively. The difference with single mRNA-1273 was -0·4% (-16 to 15; p=0·96) for 2 × mRNA-1273 and -6% (-21 to 10; p=0·49) for Ad26.COV2-S. Mycophenolate mofetil- was also not superior to mycophenolate mofetil+, with seroresponse rates of 37 (80%) of 46 (66-91) and 31 (67%) of 46 (52-80), and a difference of 13% (-5 to 31; p=0·15). Local adverse events were more frequent after a single and double dose of mRNA-1273 than after Ad26.COV2-S (65 [92%] of 71, 67 [92%] of 73, and 38 [50%] of 76, respectively; p<0·0001). No acute rejection occurred. There were no serious adverse events related to vaccination. INTERPRETATION: Repeated vaccination increases SARS-CoV-2-specific antibodies in KTRs, without further enhancement by use of a higher dose, a heterologous vaccine, or 2 weeks discontinuation of mycophenolate mofetil or mycophenolic acid. To achieve a stronger response, possibly required to neutralise new virus variants, repeated booster vaccination is needed. FUNDING: The Netherlands Organization for Health Research and Development and the Dutch Kidney Foundation.

8.
J Infect Dis ; 2022 Nov 19.
Article in English | MEDLINE | ID: covidwho-2264924

ABSTRACT

BACKGROUND: The COVIH-study is a prospective SARS-CoV-2 vaccination study in 1154 people with HIV (PWH), of whom 14% showed a reduced or absent antibody response after primary vaccination. We evaluated whether an additional vaccination boosts immune responses in these hyporesponders. METHODS: Consenting hyporesponders received an additional 100µg mRNA-1273 vaccination. The primary endpoint was the increase in antibodies 28 days thereafter. Secondary endpoints were the correlation between participant characteristics and antibody response, levels of neutralizing antibodies, S-specific T-cell and B-cell responses, and reactogenicity. RESULTS: Of the 66 participants, 40 previously received two doses ChAdOx1-S, 22 two doses BNT162b2, and four a single dose Ad26.COV2.S. The median age was 63[IQR:60-66], 86% were male, pre-vaccination CD4+ T-cell count was median 650/µL[IQR:423-941] and 96% had HIV-RNA < 50 copies/mL. The mean S1-specific antibody level increased from 35 BAU/mL (95%CI:24-46) to 4317 BAU/mL (95%CI:3275-5360) post-vaccination (p < 0.0001). Of all participants, 97% showed an adequate response (>300 BAU/mL) and the 45 antibody negative participants all seroconverted (>33.8 BAU/mL). A significant increase in the proportion of PWH with detectable ancestral S-specific CD4+ T-cells (p = 0.04) and S-specific B-cells (p = 0.02) was observed. CONCLUSION: An additional mRNA-1273 vaccination induced a robust serological response in 97% of PWH with a hyporesponse after primary vaccination.

10.
Clin Infect Dis ; 2022 Jul 07.
Article in English | MEDLINE | ID: covidwho-2235215

ABSTRACT

BACKGROUND: The immune response to COVID-19 vaccination is inferior in kidney transplant recipients (KTR), and to a lesser extent in patients on dialysis or with chronic kidney disease (CKD). We assessed the immune response 6 months after mRNA-1273 vaccination in kidney patients and compared this to controls. METHODS: 152 participants with CKD stages G4/5 (eGFR <30  mL/min/1.73m2), 145 participants on dialysis, 267 KTR, and 181 controls were included. SARS-CoV-2 Spike S1-specific IgG antibodies were measured by fluorescent bead-based multiplex-immunoassay, neutralizing antibodies to ancestral, Delta and Omicron (BA.1) variants by plaque reduction, and T-cell responses by IFN-γ release assay. RESULTS: At 6 months after vaccination S1-specific antibodies were detected in 100% of controls, 98.7% of CKD G4/5 patients, 95.1% of dialysis patients, and 56.6% of KTR. These figures were comparable to the response rates at 28 days, but antibody levels waned significantly. Neutralization of the ancestral and Delta variant was detected in most participants, whereas neutralization of Omicron was mostly absent. S-specific T-cell responses were detected 6 months in 75.0% of controls, 69.4% of CKD G4/5 patients, 52.6% of dialysis patients, and 12.9% of KTR. T-cell responses at 6 months were significantly lower than responses at 28 days. CONCLUSIONS: Although seropositivity rates at 6 months were comparable to that at 28 days after vaccination, significantly decreased antibody levels and T-cell responses were observed. The combination of low antibody levels, reduced T-cell responses, and absent neutralization of the newly-emerging variants indicates the need for additional boosts or alternative vaccination strategies in KTR.

11.
Clin Infect Dis ; 2022 Jun 20.
Article in English | MEDLINE | ID: covidwho-2235112

ABSTRACT

The emergence of SARS-CoV-2 variants raised questions regarding the durability of immune responses after homologous or heterologous booster vaccination after Ad26.COV2.S priming. We found that SARS-CoV-2-specific binding antibodies, neutralizing antibodies and T-cells are detectable 5 months after boosting, although waning of antibodies and limited cross-reactivity with Omicron BA.1 was observed.

12.
Clin Infect Dis ; 2022 Jul 23.
Article in English | MEDLINE | ID: covidwho-2232914

ABSTRACT

BACKGROUND: In the general population, illness after infection with the SARS-CoV-2 Omicron variant is less severe compared with previous variants. Data on the disease burden of Omicron in immunocompromised patients are lacking. We investigated the clinical characteristics and outcome of a cohort of immunocompromised patients with COVID-19 caused by Omicron. METHODS: Solid organ transplant recipients, patients on anti-CD20 therapy, and allogenic hematopoietic stem cell transplantation recipients on immunosuppressive therapy infected with the Omicron variant, were included. Patients were contacted regularly until symptom resolution. Clinical characteristics of consenting patients were collected through their electronic patient files. To identify possible risk factors for hospitalization, a univariate logistic analysis was performed. RESULTS: A total of 114 consecutive immunocompromised patients were enrolled. Eighty-nine percent had previously received three mRNA vaccinations. While only one patient died, 23 (20%) required hospital admission for a median of 11 days. A low SARS-CoV-2 IgG antibody response (<300 BAU/mL) at diagnosis, higher age, being a lung transplant recipient, more comorbidities and a higher frailty were associated with hospital admission (all p < 0.01). At the end of follow-up, 25% had still not fully recovered. Of the 23 hospitalized patients, 70% had a negative and 92% a low IgG (<300 BAU/mL) antibody response at admission. Sotrovimab was administered to 17 of them, of which one died. CONCLUSIONS: While the mortality in immunocompromised patients infected with Omicron was low, hospital admission was frequent and the duration of symptoms often prolonged. Besides vaccination, other interventions are needed to limit the morbidity from COVID-19 in immunocompromised patients.

14.
PLoS Med ; 19(10): e1003979, 2022 10.
Article in English | MEDLINE | ID: covidwho-2196855

ABSTRACT

BACKGROUND: Vaccines can be less immunogenic in people living with HIV (PLWH), but for SARS-CoV-2 vaccinations this is unknown. In this study we set out to investigate, for the vaccines currently approved in the Netherlands, the immunogenicity and reactogenicity of SARS-CoV-2 vaccinations in PLWH. METHODS AND FINDINGS: We conducted a prospective cohort study to examine the immunogenicity of BNT162b2, mRNA-1273, ChAdOx1-S, and Ad26.COV2.S vaccines in adult PLWH without prior COVID-19, and compared to HIV-negative controls. The primary endpoint was the anti-spike SARS-CoV-2 IgG response after mRNA vaccination. Secondary endpoints included the serological response after vector vaccination, anti-SARS-CoV-2 T-cell response, and reactogenicity. Between 14 February and 7 September 2021, 1,154 PLWH (median age 53 [IQR 44-60] years, 85.5% male) and 440 controls (median age 43 [IQR 33-53] years, 28.6% male) were included in the final analysis. Of the PLWH, 884 received BNT162b2, 100 received mRNA-1273, 150 received ChAdOx1-S, and 20 received Ad26.COV2.S. In the group of PLWH, 99% were on antiretroviral therapy, 97.7% were virally suppressed, and the median CD4+ T-cell count was 710 cells/µL (IQR 520-913). Of the controls, 247 received mRNA-1273, 94 received BNT162b2, 26 received ChAdOx1-S, and 73 received Ad26.COV2.S. After mRNA vaccination, geometric mean antibody concentration was 1,418 BAU/mL in PLWH (95% CI 1322-1523), and after adjustment for age, sex, and vaccine type, HIV status remained associated with a decreased response (0.607, 95% CI 0.508-0.725, p < 0.001). All controls receiving an mRNA vaccine had an adequate response, defined as >300 BAU/mL, whilst in PLWH this response rate was 93.6%. In PLWH vaccinated with mRNA-based vaccines, higher antibody responses were predicted by CD4+ T-cell count 250-500 cells/µL (2.845, 95% CI 1.876-4.314, p < 0.001) or >500 cells/µL (2.936, 95% CI 1.961-4.394, p < 0.001), whilst a viral load > 50 copies/mL was associated with a reduced response (0.454, 95% CI 0.286-0.720, p = 0.001). Increased IFN-γ, CD4+ T-cell, and CD8+ T-cell responses were observed after stimulation with SARS-CoV-2 spike peptides in ELISpot and activation-induced marker assays, comparable to controls. Reactogenicity was generally mild, without vaccine-related serious adverse events. Due to the control of vaccine provision by the Dutch National Institute for Public Health and the Environment, there were some differences between vaccine groups in the age, sex, and CD4+ T-cell counts of recipients. CONCLUSIONS: After vaccination with BNT162b2 or mRNA-1273, anti-spike SARS-CoV-2 antibody levels were reduced in PLWH compared to HIV-negative controls. To reach and maintain the same serological responses as HIV-negative controls, additional vaccinations are probably required. TRIAL REGISTRATION: The trial was registered in the Netherlands Trial Register (NL9214). https://www.trialregister.nl/trial/9214.


Subject(s)
COVID-19 Vaccines , COVID-19 , HIV Infections , Adult , Female , Humans , Male , Middle Aged , Ad26COVS1 , Antibodies, Viral , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , HIV Infections/immunology , Immunogenicity, Vaccine , Immunoglobulin G , Netherlands/epidemiology , Prospective Studies , RNA, Messenger , SARS-CoV-2
15.
Front Immunol ; 13: 1067749, 2022.
Article in English | MEDLINE | ID: covidwho-2163027

ABSTRACT

Vaccination against coronavirus disease 2019 (COVID-19) has contributed greatly to providing protection against severe disease, thereby reducing hospital admissions and deaths. Several studies have reported reduction in vaccine effectiveness over time against the Omicron sub-lineages. However, the willingness to receive regular booster doses in the general population is declining. To determine the need for repeated booster vaccinations in healthy individuals and to aid policymakers in future public health interventions for COVID-19, we aim to gain insight into the immunogenicity of the additional bivalent booster vaccination in a representative sample of the healthy Dutch population. The SWITCH ON study was initiated to investigate three main topics: i) immunogenicity of bivalent vaccines after priming with adenovirus- or mRNA-based vaccines, ii) immunological recall responses and reactivity with relevant variants after booster vaccination, and iii) the necessity of booster vaccinations for the healthy population in the future. Clinical trial registration: https://clinicaltrials.gov/, identifier NCT05471440.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , Health Personnel , Vaccination , Health Status , Public Health
16.
iScience ; 26(1): 105753, 2023 Jan 20.
Article in English | MEDLINE | ID: covidwho-2149916

ABSTRACT

The emergence of novel SARS-CoV-2 variants led to the recommendation of booster vaccinations after Ad26.COV2.S priming. It was previously shown that heterologous booster vaccination induces high antibody levels, but how heterologous boosters affect other functional aspects of the immune response remained unknown. Here, we performed immunological profiling of Ad26.COV2.S-primed individuals before and after homologous or heterologous (mRNA-1273 or BNT162b2) booster. Booster vaccinations increased functional antibodies targeting ancestral SARS-CoV-2 and emerging variants. Especially heterologous booster vaccinations induced high levels of functional antibodies. In contrast, T-cell responses were similar in magnitude following homologous or heterologous booster vaccination and retained cross-reactivity towards variants. Booster vaccination led to a minimal expansion of SARS-CoV-2-specific T-cell clones and no increase in the breadth of the T-cell repertoire. In conclusion, we show that Ad26.COV2.S priming vaccination provided a solid immunological base for heterologous boosting, increasing humoral and cellular responses targeting emerging variants of concern.

17.
Transplant Direct ; 8(11): e1387, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2087946

ABSTRACT

Studies have shown that coronavirus disease 2019 (COVID-19) vaccination is associated with a lower humoral response in vulnerable kidney patients. Here, we investigated the T-cell response following COVID-19 vaccination in kidney patients compared with controls. Methods: Patients with chronic kidney disease (CKD) stage G4/5 [estimated glomerular filtration rate <30 mL/min/1.73 m2], on dialysis, or living with a kidney transplant and controls received 2 doses of the mRNA-1273 COVID-19 vaccine. Peripheral blood mononuclear cells were isolated at baseline and 28 d after the second vaccination. In 398 participants (50% of entire cohort; controls n = 95, CKD G4/5 n = 81, dialysis n = 78, kidney transplant recipients [KTRs] n = 144)' SARS-CoV-2-specific T cells were measured using an IFN-γ enzyme-linked immune absorbent spot assay. Results: A significantly lower SARS-CoV-2-specific T-cell response was observed after vaccination of patients on dialysis (54.5%) and KTRs (42.6%) in contrast to CDK G4/5 (70%) compared with controls (76%). The use of calcineurin inhibitors was associated with a low T-cell response in KTRs. In a subset of 20 KTRs, we observed waning of the cellular response 6 mo after the second vaccination, which was boosted to some extent after a third vaccination, although T-cell levels remained low. Conclusion: Our data suggest that vaccination is less effective in these patient groups, with humoral nonresponders also failing to mount an adequate cellular response, even after the third vaccination. Given the important role of T cells in protection against disease and cross-reactivity to SARS-CoV-2 variants, alternative vaccination strategies are urgently needed in these high-risk patient groups.

19.
Emerg Microbes Infect ; 11(1): 1778-1786, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1915483

ABSTRACT

The Omicron BA.1 (B.1.1.529) SARS-CoV-2 variant is characterized by a high number of mutations in the viral genome, associated with immune escape and increased viral spread. It remains unclear whether milder COVID-19 disease progression observed after infection with Omicron BA.1 in humans is due to reduced pathogenicity of the virus or due to pre-existing immunity from vaccination or previous infection. Here, we inoculated hamsters with Omicron BA.1 to evaluate pathogenicity and kinetics of viral shedding, compared to Delta (B.1.617.2) and to animals re-challenged with Omicron BA.1 after previous SARS-CoV-2 614G infection. Omicron BA.1 infected animals showed reduced clinical signs, pathological changes, and viral shedding, compared to Delta-infected animals, but still showed gross- and histopathological evidence of pneumonia. Pre-existing immunity reduced viral shedding and protected against pneumonia. Our data indicate that the observed decrease of disease severity is in part due to intrinsic properties of the Omicron BA.1 variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Humans , Mesocricetus , SARS-CoV-2/genetics , Vaccination
20.
Sci Immunol ; 7(75): eabq4450, 2022 09 23.
Article in English | MEDLINE | ID: covidwho-1901912

ABSTRACT

The emergence and rapid spread of SARS-CoV-2 variants may affect vaccine efficacy substantially. The Omicron variant termed BA.2, which differs substantially from BA.1 based on genetic sequence, is currently replacing BA.1 in several countries, but its antigenic characteristics have not yet been assessed. Here, we used antigenic cartography to quantify and visualize antigenic differences between early SARS-CoV-2 variants (614G, Alpha, Beta, Gamma, Zeta, Delta, and Mu) using hamster antisera obtained after primary infection. We first verified that the choice of the cell line for the neutralization assay did not affect the topology of the map substantially. Antigenic maps generated using pseudo-typed SARS-CoV-2 on the widely used VeroE6 cell line and the human airway cell line Calu-3 generated similar maps. Maps made using authentic SARS-CoV-2 on Calu-3 cells also closely resembled those generated with pseudo-typed viruses. The antigenic maps revealed a central cluster of SARS-CoV-2 variants, which grouped on the basis of mutual spike mutations. Whereas these early variants are antigenically similar, clustering relatively close to each other in antigenic space, Omicron BA.1 and BA.2 have evolved as two distinct antigenic outliers. Our data show that BA.1 and BA.2 both escape vaccine-induced antibody responses as a result of different antigenic characteristics. Thus, antigenic cartography could be used to assess antigenic properties of future SARS-CoV-2 variants of concern that emerge and to decide on the composition of novel spike-based (booster) vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cell Line , Cricetinae , Humans , Immune Sera , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL